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Background

Statistical energy functions (SEFs) are an important tool in protein structure science. SEFs have a broad range of applications such as protein structure prediction, 3D-model
assessment or prediction of stability changes upon point mutations. SEFs are usually evaluated on structure decoy sets as collected in the Decoys ’R’ Us database and
subsequently applied for the above mentioned tasks. It remains unclear to which extent the numerous SEF parameters of a certain SEF implementation are valid throughout
the different applications.

Methods

We enumerate the typical parameters for two SEFs, optimize the SEFs for native fold identification in a
decoy set and apply them to change in stability prediction. We then optimize the SEFs for change in stability
predictions and apply them to native fold identification.

Datasets

I SEF compilation
I PISCES database[3]
I resolution cutoff: 1.8Å, R-factor cutoff: 0.25, identity cutoff: 20%, chain length cutoff: 500
I To prevent undesirable side effects we filter the PISCES data for: (i) chains which are associated with

viruses and membranes by PDB keyword search, (ii) chains with an incomplete backbone, (iii) chains
found via PDB blast as too similar to the structures in one of the two datasets, and finally (iv) chains
with a z-score > −6.67− 0.0141x + 2 (x . . . sequence length) calculated by ProSa2003[4].

IEvaluation and optimization
I native fold identification: Decoys ’R’ Us[1] (multiple decoy sets)
I stability change prediction: training and validation set published by Dehouck et al.[2]

Evaluation

Each parameter set is evaluated by two methods. For the native fold identification we use the average rank
of the native folds in percent to the total number of decoys in each set. For stability change prediction we
use the Pearson correlation coefficient between the measured ddG values and the delta energy (energy of
wildtype - energy of mutant). For this study we only investigate monomeric proteins.

Statistical Energy Functions

I pair-SEF
I preferred distances between two types of atoms/residues
I parameters: spatial distance range, sequence separation, bin-size, smoothing function

I contact-SEF
I numbers of contacts to other atoms within a defined distance
I parameters: maximum spatial distance, bin-size

Results
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(A) The effect of the spatial distance range parameter for pair-SEF compilation on the native fold identification (blue)
and the stability change prediction (green). The lower distance cutoff (dl) is fixed at 0Å. The upper distance cutoff
(du) varied between 5Å and 30Å. The values of four different ksplit settings (5,10,15,20) are shown. The parameter ksplit
controls the pooling of distance measurements during SEF compilation, where measurements for k < ksplit are compiled
in distinct SEFs, one per k-level, while the others are collected in a single SEF for k = [ksplit . . .∞]. (B) Same setup
applied to structures smaller than 100 residues. (C) The ksplit parameter varied between 1 and 20. The values for three
different upper distance cutoffs (10Å, 15Å, 20Å) are shown. (D) The predictive power of the contact-SEF for spatial
distance cutoffs between 5Å and 20Å.

In case of pair-SEF, the prediction power for stability changes slightly increases
with larger distance ranges, while for native fold identification short distances
lead to better results. The native fold identification for short structures even
gets worse if long distances are included. In contrast, the maximum distance
parameter of the contact-SEF shows nearly the same optima in both applications.

The variation of bin-size and σ affects both evaluation tests comparably (data
not shown). However, optimal values for bin-size and σ heavily depend on the
size of the SEF compilation data set.

Different parameters have variable effects on the predictive power of the SEFs
and there are mutual dependencies. The plot below shows the prediction
power for stability changes of the top 100 parameter sets found for native
fold identification (blue) and the top 100 parameter sets found for this ap-
plication (green). The prediction power of the SEFs optimized for stabil-
ity changes is significantly higher (Wilcoxon rank-sum test p-value< 2.2e−16).
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Conclusion

SEFs optimized for native fold identification are of limited applica-
bility in change of stability prediction and vice versa. Single SEF
parameters may show a small effect but in combination they lead
to large differences in the predictive power of the SEFs. In ongo-
ing work we investigate the effect of further parameters, as well as
how methods which build on the SEFs are affected by the different
optimization approaches.
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