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Introduction

The binding of an antigen peptide to MHC class II molecules is essential for initiating an immune response. Thus, fast and accurate identification of potential binding peptides is
critical for basic research and clinical translation. Nowadays, various computational approaches exist for this task, which can roughly be divided into two classes: sequence-based
methods employing machine learning (ML), and structure-based methods using physical concepts realized by docking, molecular dynamics, or threading. We present a novel
structure-based approach which utilizes statistical scoring functions.

Methods

For our approach, statistical scoring functions (SSFs) are used to evaluate interactions between peptides and MHC II molecules. Thereby, predictions are performed on sets of
allele-specific 3D models of MHC II molecules. SSFs have a wide range of applications in protein science, e.g. for the assessment of protein structures [1] or the scoring of
protein-protein interactions [2]. Here, we utilize MAESTRO pSSFs [3]. Initially designed for the prediction of stability changes upon mutations, these SSFs have to be shown useful
for other tasks. To put a focus on interactions between chains, we compiled the SSFs on a set of 1227 multimeric structures containing at least one polypeptide with a length
between 5 and 20 residues. MHC models were excluded beforehand to prevent overfitting.

Based on a set of 161 experimental determined template structures (templates), at least 100 models for each HLA-DR allele were generated utilizing MODELLER [4]. All models
include an alanine nonamer binding peptide as a placeholder. These placeholders represent the peptide binding core, their position was defined by a 3D alignment of the templates.
Subsequently, the resulting models were scored with multiple scoring tools. The resulting models are provided at our M23D database [5].

Predictions are performed in three major steps: (i) First, a set of suitable models is selected based on their scores. Optionally, the peptide placeholders are replaced by alternative
peptide conformations derived from the templates. We further investigated the effect of peptide conformations extended by two or four residues. These four variants of the peptide
conformation are called 9-mer placeholder, 9-mer core, 11-mer core, and 13-mer core, for short. (ii) Then the potential binding peptide sequences are applied to each of the models
and are subsequently scored. Multiple scores are computed if the target sequence is not of the same length as the peptide (placeholder) in the models. (iii) Finally, a consensus
score is calculated by averaging the minimum scores achieved with each model. As the prediction is based on precalculated 3D models, the scoring of a certain binding peptide
takes less than a second, which will allow predictions on a proteome scale.

Results

We tested our approach on a dataset provided by Jensen et al. [6]. The set contains 87363 log-transformed IC50 binding values for 36 HLA-DR molecules. For the performance tests
below all peptides with an IC50 binding value < 500nM were considered as binders. Table 1 shows performance results (AUC) per HLA allele in comparison with NetMHCIIpan-3.2.
Figure 1 presents the accuracy on the whole dataset for the various peptide conformation setups.

MHC II NetMHCIIpan-3.2 MAESTRO
allele #peptides #binders 5-fold1,* LOMO2,* pSSFs3

DRB1 0101 10412 6376 0.83 0.78 0.70
DRB1 0301 5352 1457 0.82 0.70 0.60
DRB1 0401 6317 3022 0.81 0.77 0.61
DRB1 0404 3657 1852 0.81 0.79 0.69
DRB1 0405 3962 1654 0.83 0.80 0.69
DRB1 0701 6325 3456 0.88 0.83 0.73
DRB1 0802 4465 2036 0.83 0.77 0.68
DRB1 0901 4318 2164 0.83 0.79 0.70
DRB1 1001 2066 1521 0.92 0.91 0.77
DRB1 1101 6045 2667 0.86 0.77 0.69
DRB1 1201 2384 759 0.87 0.80 0.73
DRB1 1301 1034 520 0.86 0.73 0.71
DRB1 1302 4477 2249 0.89 0.70 0.67
DRB1 1501 4850 2107 0.83 0.78 0.73
DRB1 1602 1699 989 0.88 0.87 0.72
DRB3 0101 4633 1415 0.89 0.80 0.60
DRB3 0202 3334 1055 0.87 0.76 0.69
DRB4 0101 3961 1540 0.82 0.73 0.67
DRB5 0101 5125 2430 0.85 0.77 0.65
Average 0.85 0.78 0.69

Table 1: Comparison of AUC performance between NetMHCIIpan-3.2 (15-fold cross-
validation and 2Leave-one-molecule-out experiment) and 3our approach based on MAE-
STRO pSSFs. Only alleles with more than 1000 sequences of potential binders are pre-
sented. *AUC values taken from Jensen et al. [6].
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9−mer placeholder − AUC 66.45 (95%CI 66.09−66.81)
9−mer core − AUC 66.93 (95%CI 66.57−67.28)
11−mer core − AUC 68.01 (95%CI 67.66−68.36)
13−mer core − AUC 68.01 (95%CI 67.91−68.61)
11&13−mer core − AUC 68.31 (95%CI 67.96−68.66)

Figure 1: Prediction performance on a set of 87363 binding values. 9-mer
placeholder: predictions are performed on 20 allele-specific models and their
peptide placeholders. 9/11/13-mer core: predictions are performed on a
single model, but with alternative peptide conformations derived from the
available template structures. 11&13-mer core: combines the results of
11-mer and 13-mer core.

While the results clearly show that NetMHCIIpan-3.2 reaches better AUC values, they also show the potential of our approach, especially since our method was not specifically
optimized or trained on these data. By extending the core binding peptide by the flanking residues (11/13-mer core), the results can be slightly increased. Besides the classification,
SSFs also provide a promising base for the prediction of IC50 binding values itself. Our approach reaches a Pearson’s ρ of 0.36 and a Spearman’s ρ of 0.38, respectively.

Conclusion and Outlook

Our method is not limited to specific alleles or the availability of an
experimentally determined structure. The utilized SSFs are not specif-
ically trained on MHC binding data. Thus the risk of overfitting on
certain training data is reduced to a minimum.

In ongoing work, the enrichment of our approach with various machine
learning techniques is investigated. First experiments provide promising
results. Further, the prediction capabilities will be extended to all loci.

An easy to use web interface and a RESTful web service is under
development. The final version will be provided for free to the scientific
community.
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[3] MAESTRO - multi agent stability prediction upon point mutations. Laimer et al., 2015.
https://biwww.che.sbg.ac.at/maestro

[4] Comparative protein modelling by satisfaction of spatial restraints. Sali and Blundell, 1993.
https://salilab.org/modeller/

[5] M23D - MHC-II Model Database. Laimer et al., 2018.
https://biwww.che.sbg.ac.at/m23d/

[6] Improved methods for predicting peptide binding affinity to MHC class II molecules. Jensen et al., 2018.
http://www.cbs.dtu.dk/services/NetMHCIIpan/

josef.laimer@sbg.ac.at This work was funded by the Austrian Science Fund (FWF, grant P30042).

https://www.came.sbg.ac.at/
https://biwww.che.sbg.ac.at/maestro
https://salilab.org/modeller/
https://biwww.che.sbg.ac.at/m23d/
http://www.cbs.dtu.dk/services/NetMHCIIpan/

